Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Psychiatry ; 15: 1304528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389984

RESUMO

It has been suggested that aberrant excitation/inhibition (E/I) balance and dysfunctional structure and function of relevant brain networks may underlie the symptoms of autism spectrum disorder (ASD). However, the nomological network linking these constructs to quantifiable measures and mechanistically relating these constructs to behavioral symptoms of ASD is lacking. Herein we describe a within-subject, controlled, proof-of-mechanism study investigating the pathophysiology of auditory/language processing in adolescents with ASD. We utilize neurophysiological and neuroimaging techniques including magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) metrics of language network structure and function. Additionally, we apply a single, individually targeted session of continuous theta burst stimulation (cTBS) as an experimental probe of the impact of perturbation of the system on these neurophysiological and neuroimaging outcomes. MRS, fMRI, and MEG measures are evaluated at baseline and immediately prior to and following cTBS over the posterior superior temporal cortex (pSTC), a region involved in auditory and language processing deficits in ASD. Also, behavioral measures of ASD and language processing and DWI measures of auditory/language network structures are obtained at baseline to characterize the relationship between the neuroimaging and neurophysiological measures and baseline symptom presentation. We hypothesize that local gamma-aminobutyric acid (GABA) and glutamate concentrations (measured with MRS), and structural and functional activity and network connectivity (measured with DWI and fMRI), will significantly predict MEG indices of auditory/language processing and behavioral deficits in ASD. Furthermore, a single session of cTBS over left pSTC is hypothesized to lead to significant, acute changes in local glutamate and GABA concentration, functional activity and network connectivity, and MEG indices of auditory/language processing. We have completed the pilot phase of the study (n=20 Healthy Volunteer adults) and have begun enrollment for the main phase with adolescents with ASD (n=86; age 14-17). If successful, this study will establish a nomological network linking local E/I balance measures to functional and structural connectivity within relevant brain networks, ultimately connecting them to ASD symptoms. Furthermore, this study will inform future therapeutic trials using cTBS to treat the symptoms of ASD.

2.
J Affect Disord ; 350: 274-285, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228276

RESUMO

Misophonia is a disorder of decreased tolerance to certain aversive, repetitive common sounds, or to stimuli associated with these sounds. Two matched groups of adults (29 participants with misophonia and 30 clinical controls with high emotion dysregulation) received inhibitory neurostimulation (1 Hz) over a personalized medial prefrontal cortex (mPFC) target functionally connected to the left insula; excitatory neurostimulation (10 Hz) over a personalized dorsolateral PFC (dlPFC) target; and sham stimulation over either target. Stimulations were applied while participants were either listening or cognitively downregulating emotions associated with personalized aversive, misophonic, or neutral sounds. Subjective units of distress (SUDS) and psychophysiological measurements (e.g., skin conductance response [SCR] and level [SCL]) were collected. Compared to controls, participants with misophonia reported higher distress (∆SUDS = 1.91-1.93, ps < 0.001) when listening to and when downregulating misophonic distress. Both types of neurostimulation reduced distress significantly more than sham, with excitatory rTMS providing the most benefit (Cohen's dSUDS = 0.53; dSCL = 0.14). Excitatory rTMS also enhanced the regulation of emotions associated with misophonic sounds in both groups when measured by SUDS (dcontrol = 1.28; dMisophonia = 0.94), and in the misophonia group alone when measured with SCL (d = 0.20). Both types of neurostimulation were well tolerated. Engaging in cognitive restructuring enhanced with high-frequency neurostimulation led to the lowest misophonic distress, highlighting the best path forward for misophonia interventions.


Assuntos
Terapia de Reestruturação Cognitiva , Emoções , Adulto , Humanos , Emoções/fisiologia , Transtornos da Audição , Córtex Pré-Frontal/fisiologia
3.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-226352

RESUMO

Background: Despite the growing use of repetitive transcranial magnetic stimulation (rTMS) as a treatment for depression, there is a limited understanding of the mechanisms of action and how potential treatment-related brain changes help to characterize treatment response. To address this gap in understanding we investigated the effects of an approach combining rTMS with simultaneous psychotherapy on global functional connectivity. Method: We compared task-related functional connectomes based on an idiographic goal priming task tied to emotional regulation acquired before and after simultaneous rTMS/psychotherapy treatment for patients with major depressive disorders and compared these changes to normative connectivity patterns from a set of healthy volunteers (HV) performing the same task. Results: At baseline, compared to HVs, patients demonstrated hyperconnectivity of the DMN, cerebellum and limbic system, and hypoconnectivity of the fronto-parietal dorsal-attention network and visual cortex. Simultaneous rTMS/psychotherapy helped to normalize these differences, which were reduced after treatment. This finding suggests that the rTMS/therapy treatment regularizes connectivity patterns in both hyperactive and hypoactive brain networks. Conclusions: These results help to link treatment to a comprehensive model of the neurocircuitry underlying depression and pave the way for future studies using network-guided principles to significantly improve rTMS efficacy for depression. (AU)


Assuntos
Humanos , Estimulação Magnética Transcraniana , Psicoterapia , Transtorno Depressivo Maior/terapia , Depressão , Terapia Cognitivo-Comportamental
4.
J ECT ; 39(4): 271-273, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009970

RESUMO

ABSTRACT: Repetitive transcranial magnetic stimulation (rTMS) is Food and Drug Administration cleared for clinical use in treatment-resistant depression and a growing list of other disorders. The clinical uptake of rTMS has been facilitated by its relatively benign adverse-effect profile compared with other treatment modalities. Seizure is a rare but serious adverse event that has been reported with rTMS, when dosage exceeds safety guidelines or in individuals at increased risk for seizure. Fortunately, most rTMS-induced seizures are typically transient, with no adverse sequelae, but they may lead to treatment discontinuation. Seizure is not the only cause of loss of conscious and abnormal movements induced by rTMS. Convulsive syncope, a more common adverse event that involves loss of consciousness associated with myoclonic movements, can be difficult to differentiate from an rTMS-induced seizure. We report the case of a 52-year-old man with no known seizure risk factors, enrolled in an institutional review board-approved research study who developed what appeared to be a convulsive syncopal episode lasting 10 to 15 seconds during day 2 of a 30-day rTMS protocol (10 Hz, 120% of motor threshold, 4-second pulse train, 26-second intertrain interval, 3000 pulses per session), with no adverse sequelae. The patient's history, screening, physical examination, pertinent laboratory, neurology consult, electroencephalogram, and imaging findings are discussed. This case demonstrates that distinguishing between convulsive syncope and rTMS-induced seizure can be a diagnostic challenge. Clinicians and researchers delivering rTMS should be familiar with the risk factors for rTMS-induced seizures and rTMS-induced convulsive syncope, to screen for predisposing factors and to manage these rare adverse events if they occur.


Assuntos
Eletroconvulsoterapia , Estimulação Magnética Transcraniana , Masculino , Humanos , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Convulsões/diagnóstico , Convulsões/etiologia , Convulsões/terapia , Síncope/etiologia , Síncope/complicações , Fatores de Risco
5.
Int J Clin Health Psychol ; 23(4): 100382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922930

RESUMO

Background: Despite the growing use of repetitive transcranial magnetic stimulation (rTMS) as a treatment for depression, there is a limited understanding of the mechanisms of action and how potential treatment-related brain changes help to characterize treatment response. To address this gap in understanding we investigated the effects of an approach combining rTMS with simultaneous psychotherapy on global functional connectivity. Method: We compared task-related functional connectomes based on an idiographic goal priming task tied to emotional regulation acquired before and after simultaneous rTMS/psychotherapy treatment for patients with major depressive disorders and compared these changes to normative connectivity patterns from a set of healthy volunteers (HV) performing the same task. Results: At baseline, compared to HVs, patients demonstrated hyperconnectivity of the DMN, cerebellum and limbic system, and hypoconnectivity of the fronto-parietal dorsal-attention network and visual cortex. Simultaneous rTMS/psychotherapy helped to normalize these differences, which were reduced after treatment. This finding suggests that the rTMS/therapy treatment regularizes connectivity patterns in both hyperactive and hypoactive brain networks. Conclusions: These results help to link treatment to a comprehensive model of the neurocircuitry underlying depression and pave the way for future studies using network-guided principles to significantly improve rTMS efficacy for depression.

6.
Front Hum Neurosci ; 16: 883337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795258

RESUMO

Transcranial magnetic stimulation (TMS) was used to test the functional role of parietal and prefrontal cortical regions activated during a playing card Guilty Knowledge Task (GKT). Single-pulse TMS was applied to 15 healthy volunteers at each of three target sites: left and right dorsolateral prefrontal cortex and midline parietal cortex. TMS pulses were applied at each of five latencies (from 0 to 480 ms) after the onset of a card stimulus. TMS applied to the parietal cortex exerted a latency-specific increase in inverse efficiency score and in reaction time when subjects were instructed to lie relative to when asked to respond with the truth, and this effect was specific to when TMS was applied at 240 ms after stimulus onset. No effects of TMS were detected at left or right DLPFC sites. This manipulation with TMS of performance in a deception task appears to support a critical role for the parietal cortex in intentional false responding, particularly in stimulus selection processes needed to execute a deceptive response in the context of a GKT. However, this interpretation is only preliminary, as further experiments are needed to compare performance within and outside of a deceptive context to clarify the effects of deceptive intent.

7.
J Neural Eng ; 19(2)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35377345

RESUMO

Objective.Transcranial magnetic stimulation (TMS) can modulate brain function via an electric field (E-field) induced in a brain region of interest (ROI). The ROI E-field can be computationally maximized and set to match a specific reference using individualized head models to find the optimal coil placement and stimulus intensity. However, the available software lacks many practical features for prospective planning of TMS interventions and retrospective evaluation of the experimental targeting accuracy.Approach.The TMS targeting and analysis pipeline (TAP) software uses an MRI/fMRI-derived brain target to optimize coil placement considering experimental parameters such as the subject's hair thickness and coil placement restrictions. The coil placement optimization is implemented in SimNIBS 3.2, for which an additional graphical user interface (TargetingNavigator) is provided to visualize/adjust procedural parameters. The coil optimization process also computes the E-field at the target, allowing the selection of the TMS device intensity setting to achieve specific E-field strengths. The optimized coil placement information is prepared for neuronavigation software, which supports targeting during the TMS procedure. The neuronavigation system can record the coil placement during the experiment, and these data can be processed in TAP to quantify the accuracy of the experimental TMS coil placement and induced E-field.Main results.TAP was demonstrated in a study consisting of three repetitive TMS sessions in five subjects. TMS was delivered by an experienced operator under neuronavigation with the computationally optimized coil placement. Analysis of the experimental accuracy from the recorded neuronavigation data indicated coil location and orientation deviations up to about 2 mm and 2°, respectively, resulting in an 8% median decrease in the target E-field magnitude compared to the optimal placement.Significance.TAP supports navigated TMS with a variety of features for rigorous and reproducible stimulation delivery, including planning and evaluation of coil placement and intensity selection for E-field-based dosing.


Assuntos
Neuronavegação , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Humanos , Neuronavegação/métodos , Estudos Prospectivos , Estudos Retrospectivos , Estimulação Magnética Transcraniana/métodos
8.
J Affect Disord ; 301: 378-389, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038479

RESUMO

BACKGROUND: Transdiagnostic clinical emotional dysregulation is a key component of many mental health disorders and offers an avenue to address multiple disorders with one transdiagnostic treatment. In the current study, we pilot an intervention that combines a one-time teaching and practice of cognitive restructuring (CR) with repetitive transcranial magnetic stimulation (rTMS), targeted based on functional magnetic resonance imaging (fMRI). METHODS: Thirty-seven clinical adults who self-reported high emotional dysregulation were enrolled in this randomized, double-blind, placebo-controlled trial. fMRI was collected as participants were reminded of lifetime stressors and asked to downregulate their distress using CR tactics. fMRI BOLD data were analyzed to identify the cluster of voxels within the left dorsolateral prefrontal cortex (dlPFC) with the highest activation when participants attempted to downregulate, versus passively remember, distressing memories. Participants underwent active or sham rTMS (10 Hz) over the left dlPFC target while practicing CR following emotional induction using recent autobiographical stressors. RESULTS: Receiving active versus sham rTMS led to significantly higher high frequency heart rate variability during regulation, lower regulation duration during the intervention, and higher likelihood to use CR during the week following the intervention. There were no differences between conditions when administering neurostimulation alone without the CR skill and compared to sham. Participants in the sham versus active condition experienced less distress the week after the intervention. There were no differences between conditions at the one-month follow up. CONCLUSION: This study demonstrated that combining active rTMS with emotion regulation training for one session significantly enhances emotion regulation and augments the impact of training for as long as a week. These findings are a promising step towards a combined intervention for transdiagnostic emotion dysregulation.


Assuntos
Terapia de Reestruturação Cognitiva , Imageamento por Ressonância Magnética , Adulto , Método Duplo-Cego , Humanos , Córtex Pré-Frontal , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
9.
Psychother Psychosom ; 91(2): 94-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34551415

RESUMO

INTRODUCTION: Emotional dysregulation constitutes a serious public health problem in need of novel transdiagnostic treatments. OBJECTIVE: To this aim, we developed and tested a one-time intervention that integrates behavioral skills training with concurrent repetitive transcranial magnetic stimulation (rTMS). METHODS: Forty-six adults who met criteria for at least one DSM-5 disorder and self-reported low use of cognitive restructuring (CR) were enrolled in a randomized, double-blind, sham-controlled trial that used a between-subjects design. Participants were taught CR and underwent active rTMS applied at 10 Hz over the right (n = 17) or left (n = 14) dorsolateral prefrontal cortex (dlPFC) or sham rTMS (n = 15) while practicing reframing and emotional distancing in response to autobiographical stressors. RESULTS: Those who received active left or active right as opposed to sham rTMS exhibited enhanced regulation (ds = 0.21-0.62) as measured by psychophysiological indices during the intervention (higher high-frequency heart rate variability, lower regulation duration). Those who received active rTMS over the left dlPFC also self-reported reduced distress throughout the intervention (d = 0.30), higher likelihood to use CR, and lower daily distress during the week following the intervention. The procedures were acceptable and feasible with few side effects. CONCLUSIONS: These findings show that engaging frontal circuits simultaneously with cognitive skills training and rTMS may be clinically feasible, well-tolerated and may show promise for the treatment of transdiagnostic emotional dysregulation. Larger follow-up studies are needed to confirm the efficacy of this novel therapeutic approach.


Assuntos
Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Adulto , Terapia de Reestruturação Cognitiva , Método Duplo-Cego , Humanos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
10.
Brain Behav ; 11(11): e2361, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34651464

RESUMO

BACKGROUND: Online repetitive transcranialmagnetic stimulation (rTMS) has been shown to modulate working memory (WM) performance in a site-specific manner, with behavioral improvements due to stimulation of the dorsolateral prefrontal cortex (DLPFC), and impairment from stimulation to the lateral parietal cortex (LPC). Neurobehavioral studies have demonstrated that subprocesses of WM allowing for the maintenance and manipulation of information in the mind involve unique cortical networks. Despite promising evidence of modulatory effects of rTMS on WM, no studies have yet demonstrated distinct modulatory control of these two subprocesses. The current study therefore sought to explore this possibility through site-specific stimulation during an online task invoking both skills. METHODS: Twenty-nine subjects completed a 4-day protocol, in which active or sham 5Hz rTMS was applied over the DLPFC and LPC in separate blocks of trials while participants performed tasks that required either maintenance alone, or both maintenance and manipulation (alphabetization) of information. Stimulation targets were defined individually based on fMRI activation and structural network properties. Stimulation amplitude was adjusted using electric field modeling to equate induced current in the target region across participants. RESULTS: Despite the use of advanced techniques, no significant differences or interactions between active and sham stimulation were found. Exploratory analyses testing stimulation amplitude, fMRI activation, and modal controllability showed nonsignificant but interesting trends with rTMS effects. CONCLUSION: While this study did not reveal any significant behavioral changes in WM, the results may point to parameters that contribute to positive effects, such as stimulation amplitude and functional activation.


Assuntos
Intervenção Baseada em Internet , Memória de Curto Prazo , Córtex Pré-Frontal Dorsolateral , Humanos , Córtex Pré-Frontal , Estimulação Magnética Transcraniana
11.
Brain Sci ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924639

RESUMO

While repetitive transcranial magnetic stimulation (rTMS) is widely used to treat psychiatric disorders, innovations are needed to improve its efficacy. An important limitation is that while psychiatric disorders are associated with fronto-limbic dysregulation, rTMS does not have sufficient depth penetration to modulate affected subcortical structures. Recent advances in task-related functional connectivity provide a means to better link superficial and deeper cortical sources with the possibility of increasing fronto-limbic modulation to induce stronger therapeutic effects. The objective of this pilot study was to test whether task-related, connectivity-based rTMS could modulate amygdala activation through its connectivity with the medial prefrontal cortex (mPFC). fMRI was collected to identify a node in the mPFC showing the strongest connectivity with the amygdala, as defined by psychophysiological interaction analysis. To promote Hebbian-like plasticity, and potentially stronger modulation, 5 Hz rTMS was applied while participants viewed frightening video-clips that engaged the fronto-limbic network. Significant increases in both the mPFC and amygdala were found for active rTMS compared to sham, offering promising preliminary evidence that functional connectivity-based targeting may provide a useful approach to treat network dysregulation. Further research is needed to better understand connectivity influences on rTMS effects to leverage this information to improve therapeutic applications.

12.
Cogn Affect Behav Neurosci ; 20(5): 1090-1102, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839957

RESUMO

We recently proposed a neurocognitive model of distancing-an emotion regulation tactic-with a focus on the lateral parietal cortex. Although this brain area has been implicated in both cognitive control and self-projection processes during distancing, fMRI work suggests that these processes may be dissociable here. This preregistered (NCT03698591) study tested the contribution of left temporoparietal junction (TPJ) to distancing using repetitive transcranial magnetic stimulation. We hypothesized that inhibiting left TPJ would decrease the efficiency of distancing but not distraction, another regulation tactic with similar cognitive control requirements, thus implicating this region in the self-projection processes unique to distancing. Active and sham continuous theta burst stimulation (cTBS) were applied to 30 healthy adults in a single-session crossover design. Tactic efficiency was measured using online reports of valence and effort. The stimulation target was established from the group TPJ fMRI activation peak in an independent sample using the same distancing task, and anatomical MRI scans were used for individual targeting. Analyses employed both repeated-measures ANOVA and analytic procedures tailored to crossover designs. Irrespective of cTBS, distancing led to greater decreases in negative valence over time relative to distraction, and distancing effort decreased over time while distraction effort remained stable. Exploratory analyses also revealed that active cTBS made distancing more effortful, but not distraction. Thus, left TPJ seems to support self-projection processes in distancing, and these processes may be facilitated by repeated use. These findings help to clarify the role of lateral parietal cortex in distancing and inform applications of distancing and distraction.


Assuntos
Afeto/fisiologia , Atenção/fisiologia , Regulação Emocional/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Magnética Transcraniana , Adolescente , Adulto , Estudos Cross-Over , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
13.
J Neurosci ; 40(35): 6770-6778, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32690618

RESUMO

The brain is an inherently dynamic system, and much work has focused on the ability to modify neural activity through both local perturbations and changes in the function of global network ensembles. Network controllability is a recent concept in network neuroscience that purports to predict the influence of individual cortical sites on global network states and state changes, thereby creating a unifying account of local influences on global brain dynamics. While this notion is accepted in engineering science, it is subject to ongoing debates in neuroscience as empirical evidence linking network controllability to brain activity and human behavior remains scarce. Here, we present an integrated set of multimodal brain-behavior relationships derived from fMRI, diffusion tensor imaging, and online repetitive transcranial magnetic stimulation (rTMS) applied during an individually calibrated working memory task performed by individuals of both sexes. The modes describing the structural network system dynamics showed direct relationships to brain activity associated with task difficulty, with difficult-to-reach modes contributing to functional brain states in the hard task condition. Modal controllability (a measure quantifying the contribution of difficult-to-reach modes) at the stimulated site predicted both fMRI activations associated with increasing task difficulty and rTMS benefits on task performance. Furthermore, fMRI explained 64% of the variance between modal controllability and the working memory benefit associated with 5 Hz online rTMS. These results therefore provide evidence toward the functional validity of network control theory, and outline a clear technique for integrating structural network topology and functional activity to predict the influence of stimulation on subsequent behavior.SIGNIFICANCE STATEMENT The network controllability concept proposes that specific cortical nodes are able to steer the brain into certain physiological states. By applying external perturbation to these control nodes, it is theorized that brain stimulation is able to selectively target difficult-to-reach states, potentially aiding processing and improving performance on cognitive tasks. The current study used rTMS and fMRI during a working memory task to test this hypothesis. We demonstrate that network controllability correlates with fMRI modulation because of working memory load and with the behavioral improvements that result from a multivisit intervention using 5 Hz rTMS. This study demonstrates the validity of network controllability and offers a new targeting approach to improve efficacy.


Assuntos
Encéfalo/fisiologia , Conectoma , Memória de Curto Prazo , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Modelos Neurológicos , Estimulação Magnética Transcraniana
14.
Neurosci Lett ; 730: 135022, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32413540

RESUMO

The perception of visual motion is dependent on a set of occipitotemporal regions that are readily accessible to neuromodulation. The current study tested if paired-pulse Transcranial Magnetic Stimulation (ppTMS) could modulate motion perception by stimulating the occipital cortex as participants viewed near-threshold motion dot stimuli. In this sham-controlled study, fifteen subjects completed two sessions. On the first visit, resting motor threshold (RMT) was assessed, and participants performed an adaptive direction discrimination task to determine individual motion sensitivity. During the second visit, subjects performed the task with three difficulty levels as TMS pulses were delivered 150 and 50 ms prior to motion stimulus onset at 120% RMT, under the logic that the cumulative inhibitory effect of these pulses would alter motion sensitivity. ppTMS was delivered at one of two locations: 3 cm dorsal and 5 cm lateral to inion (scalp-based coordinate), or at the site of peak activation for "motion" according to the NeuroSynth fMRI database (meta-analytic coordinate). Sham stimulation was delivered on one-third of trials by tilting the coil 90°. Analyses showed no significant active-versus-sham effects of ppTMS when stimulation was delivered to the meta-analytic (p = 0.15) or scalp-based coordinates (p = 0.17), which were separated by 29 mm on average. Active-versus-sham stimulation differences did not interact with either stimulation location (p = 0.12) or difficulty (p = 0.33). These findings fail to support the hypothesis that long-interval ppTMS recruits inhibitory processes in motion-sensitive cortex but must be considered within the limited parameters used in this design.


Assuntos
Percepção de Movimento/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Inibição Neural/fisiologia , Lobo Occipital/fisiologia , Descanso/fisiologia , Estimulação Magnética Transcraniana/métodos
15.
Brain Sci ; 10(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349366

RESUMO

The process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults. rTMS was applied, while participants performed a delayed-response alphabetization task with two individually titrated levels of difficulty. Coil placement and stimulation amplitude were calculated from fMRI activation maps combined with electric field modeling on an individual-subject basis in order to standardize dosing at the targeted cortical location. Contrary to the a priori hypothesis, active rTMS significantly decreased accuracy relative to sham, and only in the hardest difficulty level. When compared to the results from our previous study, in which rTMS was applied over the left prefrontal cortex, we found equivalent effect sizes but opposite directionality suggesting a site-specific effect of rTMS. These results demonstrate engagement of cortical working memory processing using a novel TMS targeting approach, while also providing prescriptions for future studies seeking to enhance memory through rTMS.

16.
Brain Stimul ; 13(3): 863-872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289719

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that delivers constant, low electrical current resulting in changes to cortical excitability. Prior work suggests it may enhance motor learning giving it the potential to augment surgical technical skill acquisition. OBJECTIVES: The aim of this study was to test the efficacy of tDCS, coupled with motor skill training, to accelerate laparoscopic skill acquisition in a pre-registered (NCT03083483), double-blind and placebo-controlled study. We hypothesized that relative to sham tDCS, active tDCS would accelerate the development of laparoscopic technical skills, as measured by the Fundamentals of Laparoscopic Surgery (FLS) Peg Transfer task quantitative metrics. METHODS: In this study, sixty subjects (mean age 22.7 years with 42 females) were randomized into sham or active tDCS in either bilateral primary motor cortex (bM1) or supplementary motor area (SMA) electrode configurations. All subjects practiced the FLS Peg Transfer Task during six 20-min training blocks, which were preceded and followed by a single trial pre-test and post-test. The primary outcome was changes in laparoscopic skill performance over time, quantified by group differences in completion time from pre-test to post-test and learning curves developed from a calculated score accounting for errors. RESULTS: Learning curves calculated over the six 20-min training blocks showed significantly greater improvement in performance for the bM1 group than the sham group (t = 2.07, p = 0.039), with the bM1 group achieving approximately the same amount of improvement in 4 blocks compared to the 6 blocks required of the sham group. The SMA group also showed greater mean improvement than sham, but exhibited more variable learning performance and differences relative to sham were not significant (t = 0.85, p = 0.400). A significant main effect was present for pre-test versus post-test times (F = 133.2, p < 0.001), with lower completion times at post-test, however these did not significantly differ for the training groups. CONCLUSION: Laparoscopic skill training with active bilateral tDCS exhibited significantly greater learning relative to sham. The potential for tDCS to enhance the training of surgical skills, therefore, merits further investigation to determine if these preliminary results may be replicated and extended.


Assuntos
Competência Clínica , Laparoscopia/métodos , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Competência Clínica/normas , Excitabilidade Cortical/fisiologia , Método Duplo-Cego , Feminino , Humanos , Laparoscopia/normas , Aprendizagem/fisiologia , Masculino , Estimulação Transcraniana por Corrente Contínua/normas , Adulto Jovem
17.
Front Hum Neurosci ; 14: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038206

RESUMO

Previous research has suggested that the lateral occipital cortex (LOC) is involved with visual decision making, and specifically with the accumulation of information leading to a decision. In humans, this research has been primarily based on imaging and electroencephalography (EEG), and as such only correlational. One line of such research has led to a model of three spatially distributed brain networks that activate in temporal sequence to enable visual decision-making. The model predicted that disturbing neural processing in the LOC at a specific latency would slow object decision-making, increasing reaction time (RT) in a difficult discrimination task. We utilized transcranial magnetic stimulation (TMS) to test this prediction, perturbing LOC beginning at 400 ms post-stimulus onset, a time in the model corresponding to LOC activation at a particular difficulty level, with the expectation of increased RT. Thirteen healthy adults participated in two TMS sessions in which left and right LOC were stimulated separately utilizing neuronavigation and robotic coil guidance. Participants performed a two-alternative forced-choice task selecting whether a car or face was present on each trial amidst visual noise pre-tested to approximate a 75% accuracy level. In an effort to disrupt processing, pairs of TMS pulses separated by 50 ms were presented at one of five stimulus onset asynchronies (SOAs): -200, 200, 400, 450, or 500 ms. Behavioral performance differed systematically across SOAs for RT and accuracy measures. As predicted, TMS at 400 ms resulted in a significant slowing of RT. TMS delivered at -200 ms resulted in faster RT, indicating early stimulation may result in priming and performance enhancement. Use of TMS thus causally demonstrated the involvement of LOC in this task, and more broadly with perceptual decision-making; additionally, it demonstrated the role of TMS in testing well-developed neural models of perceptual processing.

18.
Neuroimage ; 211: 116596, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014552

RESUMO

The brain is organized into networks that reorganize dynamically in response to cognitive demands and exogenous stimuli. In recent years, repetitive transcranial magnetic stimulation (rTMS) has gained increasing use as a noninvasive means to modulate cortical physiology, with effects both proximal to the stimulation site and in distal areas that are intrinsically connected to the proximal target. In light of these network-level neuromodulatory effects, there has been a rapid growth in studies attempting to leverage information about network connectivity to improve neuromodulatory control and intervention outcomes. However, the mechanisms-of-action of rTMS on network-level effects remain poorly understood and is based primarily on heuristics from proximal stimulation findings. To help bridge this gap, the current paper presents a systematic review of 33 rTMS studies with baseline and post-rTMS measures of fMRI resting-state functional connectivity (RSFC). Literature synthesis revealed variability across studies in stimulation parameters, studied populations, and connectivity analysis methodology. Despite this variability, it is observed that active rTMS induces significant changes on RSFC, but the prevalent low-frequency-inhibition/high-frequency-facilitation heuristic endorsed for proximal rTMS effects does not fully describe distal connectivity findings. This review also points towards other important considerations, including that the majority of rTMS-induced changes were found outside the stimulated functional network, suggesting that rTMS effects tend to spread across networks. Future studies may therefore wish to adopt conventions and systematic frameworks, such as the Yeo functional connectivity parcellation atlas adopted here, to better characterize network-level effect that contribute to the efficacy of these rapidly developing noninvasive interventions.


Assuntos
Encéfalo/fisiologia , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Estimulação Magnética Transcraniana , Humanos
20.
Neurophysiol Clin ; 49(5): 371-375, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31761447

RESUMO

The safety and efficacy of neuronavigated intermittent theta burst stimulation (iTBS) in patients with bipolar depression has not yet been investigated. We hypothesized the superiority of active iTBS over sham. Twenty-six patients were randomly allocated to receive either active (n=12) or sham (n=14) iTBS. Response and remission rates according to changes in depression MADRS score were high following active iTBS (72% and 42% for response and remission rates, respectively), but no significant difference was found after sham stimulation (42%and 25%). No adverse events were observed. This study revealed the safety and tolerability of twice daily iTBS in patients with bipolar depression. Larger controlled studies are warranted to prove iTBS superiority in treatment-resistant bipolar depression.


Assuntos
Transtorno Bipolar/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Projetos Piloto , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...